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Abstract

Gas flows in the continuum-transition regime often occur in micro-electro-mechanical systems. The relaxation time
Monte Carlo (RTMC) method was modified by using an ellipsoid statistical model and a multiple translational tempera-
ture model in the BGK model equation to simulate continuum-transition gas flows. The modified RTMC method uses a
simplified form of the generalized relaxation time, which is related to the macro velocity and the local Knudsen number.
The results for Couette flow and Poiseuille flow in microchannels predicted using the modified RTMC and the DSMC are
in good agreement with the modified RTMC being much faster than the DSMC for continuum-transition gas flow
simulations.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flow regimes are classified according to the Knudsen number (Kn) which is defined as the ratio of the
molecular mean free path to a characteristic length of the system [1,2]. In the continuum flow regime
(Kn < 0.001) and the slip flow regime (0.001 < Kn < 0.1), the Navier–Stoke equations with appropriate bound-
ary conditions are sufficient to describe the flow behavior. For high Kn gas flows (Kn > 1), the Boltzmann
equation with appropriate boundary conditions can be solved theoretically and numerically with some
assumptions [3]. For gas flows in the continuum-transition regime (0.01 < Kn < 1), the Navier–Stokes equa-
tions are not sufficient to predict the flow characteristics accurately due to rarefaction effects. In addition,
the advantage of the pure particle based methods is lost due to the high computational cost. Therefore, accu-
rate models reliable and low cost are needed for the continuum-transition regime.

The direct simulation Monte Carlo (DSMC) method established by Bird [1] is the most successful
method for numerical predictions of rarefied gas flows. However, micro-electro-mechanical systems
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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(MEMS) often have gas flows in the continuum-transition regime with high densities due to the small
characteristic length. The DSMC method suffers from statistical scattering and high computational cost
due to the frequent molecular collisions. Pullin [4] proposed a particle-based continuum method called
the equilibrium particle simulation method (EPSM) to simulate high density ideal gas flows. He assumed
that the molecules were in local equilibrium at each time step and simulated the collision effects by redis-
tributing the momentum and energy of all the particles in each cell to simulate the collisions between par-
ticles. Chen et al. [5] constructed a hybrid method combining the EPSM with the DSMC to simulate
continuum-transition and transition flows. Macrossan [6–8] developed the EPSM method based on the
BGK model equation and proposed the relaxation time simulation method (RTSM). The RTSM does
not redistribute all the particles in each cell, but only a selected number of particles according to the local
relaxation time, which is associated with the local density, temperature and viscosity. To overcome some
limitations of the EPSM and RTSM methods, Wang [9] proposed a new method called the relaxation time
Monte Carlo (RTMC) method to predict flows in the continuum-transition regime. Wang et al. [10] fur-
ther developed the RTSM by introducing the Larsen–Borgnakke model with discrete rotational energies to
model the energy exchange between the translational and internal modes.

However, most of these methods have been based on the BGK model equation with the Maxwellian dis-
tribution and a Prandtl number (Pr) of unity. Holway [11] introduced an anisotropic Gaussian distribution
to replace the Maxwellian (isotropic Gaussian) distribution in the BGK model equation and suggested the
ellipsoid-statistical (ES) model for the effect of the Prandtl number. Zhang et al. [12] developed the ES model
and proved the existence and uniqueness of the solution for the ES-BGK model equation mathematically for
Pr 2 [2/3,1). Recently, Xu and Josyula [13] and Xu and Liu [14,15] introduced a new model called the multi-
ple translational temperature (MTT) model to replace the Maxwellian distribution function in the BGK model
equation and defined a generalized relaxation time. Xu’s MTT model was verified to be more efficient than
microscopic methods for predicting non-equilibrium shock structures, Couette and Poiseuille flows, nonlinear
heat conduction problems and unsteady Rayleigh problems.

In this paper, the RTMC method is further modified by introducing the ES model or the MTT model and a
simplified generalized relaxation time into the BGK model equation. The model is validated by numerical sim-
ulations of continuum-transition gas flows in microchannels, such as micro Couette flows and micro Poiseuille
flows. The computational time consumed by the modified RTMC method with the MTT model is compared
with that of the DSMC method.

2. BGK model equation

2.1. Analysis of Boltzmann equation

The Boltzmann equation derived from the Liouville equation [3] is usually used to describe rarefied gas
flows and micro gas flows with high Knudsen numbers. The Boltzmann equation is
of
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where f is the distribution function, u is the velocity vector, u � of/or is the convection term, F is the external
force and (of/ot)coll is the collision term which equals

R1
�1
R 4p

0
ðf 0f 01 � ff1ÞcrrdXdc1. A detailed description of

the collision term was given by Bird [1].
Many numerical methods have been developed from the Boltzmann equation, such as the moment method

[16,17], particle based method (DSMC, MD, etc.) [1] and the model equation [18]. These methods have been
widely used in scientific research and engineering applications. However, there are few analyses of simplifica-
tion of the Boltzmann equation. The dimensionless variables in the Boltzmann equation are
t̂ ¼ t=t0

û ¼ u=u0
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where t0 is the characteristic time, u0 is the molecular mean velocity vector and L is the characteristic length of
the calculational region.

Additionally, from dimensional analysis, there are
R 4p
0

rdX � d2;R1
�1ðf �f �1 � ff1Þcrdc1 � fnv0;

ðof =otÞcoll � nd2v0f ;

nd2 � 1=k

8>>>><
>>>>:

ð3Þ
where d is the molecular diameter and k is the molecular mean free path. Therefore,
of
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¼ Jðff1Þ ¼ Ĵðff1Þ
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ð4Þ
Neglecting external forces and substituting Eq. (4) into the Boltzmann equation, Eq. (1) gives
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ôt
þ v0t0
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with Kn = k/L and the Strouhal number, Sh = L/v0t0, the dimensionless Boltzmann equation is,
of
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Ĵðff1Þ ð6Þ
The relative significance of each term in the dimensionless Boltzmann equation can then be analyzed as a func-
tion of the Knudsen and Strouhal numbers. When Sh is large enough, the convection term can be neglected. If
Kn is also large enough, the collision term can be neglected.

The DSMC method, as a particle based method, has been verified to be equivalent to the Boltzmann equa-
tion [18]. In the DSMC method, the characteristic velocity v0 is usually about 102–103 m/s and the character-
istic time t0 can be the calculational time step Dt, which is 10�10–10�11 s in micro gas flows simulation. If the
characteristic length L = 1 lm, Sh is on the order of 102, which is large enough to neglect the convection term.
Here, if Kn is small, such as on the order of 10�2, the product of Kn and Sh is not sufficiently large to neglect
the collision term, except for very large Sh due to the large characteristic length. Inversely, when Kn and the
characteristic length are both large enough, for example in rarefied gas flows, the convection term should be
neglected and the collision term can be replaced by the linear expression in the BGK model. In such situations,
a simplified particle method based on the BGK model equation, such as the RTMC method, can be used to
more efficiently simulate high Kn gas flows.

2.2. Solution of BGK model equation

The model equation is an approximation of the Boltzmann equation with a simplified collision term. The
most famous model equation is the BGK model equation proposed by Bhatnagar, et al. [19]
of
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ou
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eq � f Þ
s
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where s = l/(nkT) is the relaxation time, l is the viscosity, n is the number density, k is the Boltzmann con-
stant, T is the temperature and feq is the local Maxwellian distribution function.
f eq ¼ ðb2=pÞ3=2 expð�b2c0
2Þ ð8Þ
where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2kT

p
, m is the molecular mass, c

0
= c � c0 is the thermal velocity and c and c0 are the molecular

and macroscopic velocities.
Generally, by assuming the distribution function f is spatially homogeneous so only changes with time are

considered and neglecting the external forces, the BGK model equation can be simplified as,
of
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¼ f eq � f

s
ð9Þ
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By integrating this equation from time t to t + Dt, the exact solution is
f ðt þ DtÞ ¼ expð�Dt=sÞf ðtÞ þ ð1� expð�Dt=sÞÞf eq ð10Þ

where f(t) and f(t + Dt) are the distribution functions at time t and t + Dt, respectively.

The RTMC method presented by Wang [9] was based on Eq. (10). However, as Kn decreases, for exam-
ple, in the continuum-transition regime in a microchannel, the molecular number density increases. The col-
lision frequency is very high due to the small distance between molecules. Large gradients may occur in
some positions in the system, especially for complex geometries. The equilibrium assumption may then fail
due to the large gradients. Therefore, the RTMC method must be modified to simulate continuum-transi-
tion gas flows.

3. Modified RTMC method

Due to limitations in the Maxwellian distribution function for simulating continuum-transition gas
flows, researchers have suggested other models to replace the Maxwellian distribution in the BGK model
equation.

3.1. Ellipsoid-statistical (ES) model

The BGK model represents the main characteristics of the collision term in the Boltzmann equation and
has been successfully used for rarefied gas flows. However, two major problems restrict the further applica-
tions of the BGK model equation. First, relaxation time, s, in the BGK model is not related to the velocity
and second, Pr is always unity.

Holway [11] introduced an anisotropic Gaussian distribution (ellipsoid-statistical, ES) to replace the Max-
wellian (isotropic Gaussian) distribution in the BGK model equation. The distribution function for the ES
model is,
gH ¼
qffiffiffiffiffiffiffiffiffiffi

2pbij

p exp � 1

2
b�1

ij c0ic
0
j

� �
ð11Þ
where q is the density. The matrix bij is given by
bij ¼
1

Pr
RT dij þ 1� 1

Pr

� �
pij

q
ð12Þ
where b�1
ij denotes the inverse matrix, T is the local temperature and pij is the stress tensor.

For Pr 2 [2/3,1), Zhang et al. [12] proved the existence and uniqueness of the solution for the ES-BGK
model equation and modified the matrix bij as follows:
b0
kk ¼ 1� Pr � 1

Pr
exp � 1

Pr
t
s

� �� �
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Pr
exp � 1

Pr
t
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� �
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ð13Þ
where the superscript ‘‘0” denotes the initial state, k = 1,2,3 and
P3

k¼1p0
kk ¼ 3q0RT 0.

Zhang et al. [12] assumed that p0
11 6 p0

22 6 p0
33 and p0

11 ¼ ap0
33. Here, 0 < a 6 1. Therefore,
a
1þ a

RT 0
6 b0

33 6 b0
22 6 b0

11 6
1

Pr
RT 0;

2

3
6 Pr < 1

1

Pr
RT 0
6 b0

11 6 b0
22 6 b0

33 6
3Pr � 1

Prð1þ aÞRT 0; 1 6 Pr <1
ð14Þ
3.2. Multiple translational temperature (MTT) model

Xu et al. [13,14] introduced the multiple translational temperature (MTT) model to replace the Maxwellian
distribution function, f eq, in the BGK model equation. For two-dimensional cases, the multiple temperature
distribution function is
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gMTT ¼ q
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ky

p
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p

r
expð�kxðu� UÞ2 � kyðv� V Þ2 � kzw2Þ ð15Þ
where q is the density, U and V are the macroscopic velocities in the x and y directions and (u,v,w) are the
components of particle velocities in the x, y and z directions. The parameters kx = m/2kTx, ky = m/2kTy

and kz = m/2kTz are related to the translational temperatures Tx, Ty and Tz in the x, y and z directions.

3.3. Simplified generalized relaxation time

Xu et al. [15] defined a generalized relaxation time,
s� ¼ s

1þ sðD2f eq=Df eqÞ
ð16Þ
where D = o/ot + u � o/ox.
However, Eq. (16) is difficult to be used in the RTMC method directly due to the complexity of D2feq/Dfeq.

Since Dfeq is both a temporal and spatial function, define Iðt;XÞ equal to Dfeq, then
D2f eq

Df eq ¼
DðDf eqÞ

Df eq ¼ DIðt;XÞ
Iðt;XÞ ð17Þ
where X = (x,y,z) is a spatial vector. Taking the x direction for example, Eq. (17) becomes,
DIðt; xÞ
Iðt; xÞ ¼

oIðt; xÞ=ot þ uxoIðt; xÞ=ox
Iðt; xÞ ð18Þ
Eq. (18) consists of the time differential, oIðt; xÞ=ot, which denotes the relative difference between two time
steps at a node and the space differential, oIðt; xÞ=ox, which denotes the relative difference between two nodes
at the same time in the numerical calculation. Initially, oIðt; xÞ=ot should be significant, but becomes negligible
as the calculation is converged and uxoIðt; xÞ=ox becomes dominant. To simplify the generalized relaxation
time and therefore, it can be easily used in RTMC method, we let,
oIðt; xÞ
ot

þ ux
oIðt; xÞ

ox
� Aux

oIðt; xÞ
ox

ð19Þ
that is, using the space term AuxoIðt; xÞ=ox to replace the sum of the time term oIðt; xÞ=ot and space term
uxoIðt; xÞ=ox. When the calculation is going to converge, uxoIðt; xÞ=ox becomes dominant, the parameter A

tends to 1.0. A is a parameter to be determined in the numerical simulation.
The local Knudsen numbers are defined as,
KnL;x ¼
k
q

oq
ox

����
���� and KnL;y ¼

k
q

oq
oy

����
���� ð20Þ
where q is the gas density, k is the molecular mean free path, defined as k ¼ 1=ð
ffiffiffi
2
p

pnd2Þ, n is the molecular
number density and d is the molecular diameter. Using a dimensional analysis and the definition of KnL, Eqs.
(16)–(20) can be combined to give the approximate expression
s
D2f eq

Df eq

� �
¼ s

DIðt; xÞ
Iðt; xÞ

� �
� A

s
k

uxKnL;x ð21Þ
The similar result can be derived for the y direction. Therefore, the generalized relaxation time can be simpli-
fied as,
s� ¼ s

1þ sðD2f eq=Df eqÞ
� s

1þ A �max s
k uxKnL;x;

s
k uyKnL;y

� � ð22Þ
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where ux and uy are the velocities in the x and y directions and KnL,x and KnL,y are the local Knudsen numbers
in the x and y directions. The simplified generalized relaxation time is, therefore, related to the velocity, as
expected [19].

3.4. Modified RTMC and its implement

In the modified RTMC method, the distribution function ft+Dt at time t + Dt in the BGK model equation
can be expressed as,
f tþDt ¼ ðg�ÞtþDt � ðs
�ÞtþDt

ðs�Þt
� ððg�Þt � f tÞ ð23Þ
where g* is a generalized model, which can be the Maxwellian, ES and MTT models.
The calculational process for the modified RTMC method is

(a) Initialize the program.
(b) Move the particles taking into account the interactions between particles and boundaries.
(c) Index the particles.
(d) Sample and calculate the macro quantities in each cell; calculate the local Knudsen number by Eq. (20)

and the simplified generalized relaxation time, s*, by Eq. (22).
(e) Recalculate the particle velocities according to Eq. (23). The detail operation is: Generate a uniform ran-

dom number Rf(0). If Rf(0) 6 (1 � exp(�Dt/s*)) for any particle in a cell, then redistribute the velocities
of the particles in that cell as following:
1. Calculate the most probable velocity, Vm, according to the generalized model, g*.
2. Generate the random velocities of the particles (PV1 and PV2 in the program) by Vm.
3. The redistributed velocities of the particles (ut+Dt and vt+Dt) are composed with the random velocities

(PV1 and PV2) plus the macro velocities (Ut and Vt) at the last time step.
(f) Return to (b) and continue the calculation until convergence.

In the modified RTMC method, the molecular collisions are modeled using the variable hard sphere (VHS)
molecular model and the energy exchange between kinetic and internal energies is calculated by using the
Larsen–Borgnakke model, in which a rotational collision number of Zr = 5 is fixed. The no-time-counter
(NTC) scheme [1] is used in the present method. The time step, Dt, should be less than the mean collision time,
so that the particle movement and their collisions are decoupled. Borrowing from the traditional computa-
tional fluid dynamics (CFD), this constraint may be expressed as a Courant–Friedrichs–Lewy (CFL) number,
CFL ¼ c0mDt=Dx < 1, where c0m ¼

ffiffiffiffiffiffiffiffiffi
cRT
p

, is the most probable molecular speed, Dx is the cell size. The value of
CFL is set at 0.25 in the present method.

4. Numerical experiments

4.1. Microchannel flow

The modified RTMC method was verified by simulating 2D gas flow in a microchannel for the physical
model shown in Fig. 1. The length of microchannel was L = 5 lm, the height was H = 1 lm, U1 = 200 m/s,
was the freestream velocity, the freestream temperature was T1 = 300 K and the walls temperature was
Tw = 300 K. The grid had 50 � 10 cells with 4 � 12 sub-cells in each cell, the time step was 7.08 � 10�11 s,
the Knudsen number was 0.1 using the microchannel height as the characteristic length, the initial number den-
sity was 1.29 � 1025. The variable hard sphere (VHS) molecules and the diffuse reflection model were used both
in the modified RTMC and DSMC methods for all the simulations. The parameter A was equal to 1.0 in the
simplified generalized relaxation time. The total molecule number was 42,111, the total number of samples was
788,020. The working gas was nitrogen for all the simulations. Table 1 listed the properties of N2.

The numerically calculated velocity, density and pressure distributions along the centerline of the micro-
channel are shown in Figs. 2–4 for Kn = 0.1. The distributions were calculated using the modified RTMC with



Fig. 1. Schematic of microchannel flow.

Table 1
Properties of N2

m (kg) f dref (m) Tref (K) x

4.65E-26 2 4.17E-10 273 0.74
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the Maxwellian, ES and MTT models, with DSMC results also plotted for comparison. The velocity based on
the Maxwellian distribution is lower than that given by the DSMC in the inlet section (Fig. 2). The probable
reason is the unity Pr, which can not predict the real ratio between the momentum and heat transfer diffusion
rates. However, although Pr is taken as 0.72 in the ES model, the velocity still has differences at the inlet and
outlet sections from the DSMC results. The differences with Pr = 0.72 are obvious, especially for the density
and pressure comparisons in Figs. 3 and 4. Inaccurate values of b11 = RT/Pr, b22 = aRT/(1 + a) and a = 1 in
the ES model may affect the simulation results, which requires further analyses in the future.

The MTT model gives more accurate results than Maxwellian and ES models as shown in Figs. 2–4 with the
numerical predictions of the modified RTMC with the MTT model being more consistent with the DSMC
results. The more accurate results are not only due to the flow variables in the MTT model being updated
based on the mass, momentum, and energy conservation through the fluxes on the macroscopic level, but also
the fluxes are constructed on the microscopic level based on the gas-kinetics equation [15].

The parameter A introduced in the process of simplifying the generalized relaxation time is very difficult to
be determined analytically. At the beginning of numerical calculation, oIðt; xÞ=ot is more significant than
uxoIðt; xÞ=ox, the parameter A can be larger or smaller than 1.0 in Eq. (19). To study the effect of parameter
A on the numerical results, three values of A, 103, 1.0 and 10�3, were checked in the simulation.

Figs. 5–7 show the velocity, density and pressure distributions along the centerline of the microchannel for
the three values of A using the MTT model. The results indicate that the velocities agree well with the results
by DSMC method for all the values of A, while some disagreement in the inlet section are shown in the Fig. 7
for the pressures. However, the Fig. 6 shows the obvious difference of densities when A equals 1000 against the
Fig. 2. Velocity distributions along the centerline of the microchannel predicted by the modified RTMC for Kn = 0.1.



Fig. 3. Density distributions along the centerline of the microchannel predicted by the modified RTMC for Kn = 0.1.

Fig. 4. Pressure distributions along the centerline of the microchannel predicted by the modified RTMC for Kn = 0.1.

Fig. 5. Velocity distributions along the centerline in a microchannel for various A.
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other two small values of A. Therefore, the current paper proposes that a fitting A in the simplified form of the
generalized relaxation time should be smaller than 1.0 for the accurate numerical results of the gas flow in the
microchannel for Kn = 0.1.



Fig. 6. Density distributions along the centerline in a microchannel for various A.

Fig. 7. Pressure distributions along the centerline in a microchannel for various A.
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The gas density strongly affects the computational cost of DSMC method due to the frequent particle col-
lision and sampling. However, the computational cost of the modified RTMC is relative to the macro-infor-
mation statistic for local Knudsen number and the velocity redistribution of the particles which are sampled
based on the simplified generalized relaxation time. For the cases with small Kn, the computation cost of
RTMC is less than DSMC. For the microchannel gas flow shown in Fig. 1, the modified RTMC with the
MTT model is about 64% cost of the DSMC method for Kn = 0.1, when the costs of both the methods are
on a same level for Kn = 1.0. With the Knudsen number decreases, the costs of the present method is about
57% for Kn = 0.05 and 43% for Kn = 0.01 of those of DSMC method, respectively.

4.2. Couette flow in microchannels

Beskok [20] presented an analytical solution for the velocity distribution for micro-Couette flows by intro-
ducing second order slip boundary conditions. The velocity distribution for micro-Couette flow [9] is
u
U 0

¼ y
H
þ 2� rv

rv

Kn
�� �

2� 2� rv

rv

Knþ 1

� �
ð24Þ
where U0 is the upper plate velocity, H is the distance between the two plates and rv is the momentum accom-
modation coefficient.
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The expression for the dimensionless temperature [9] is
T � T w

T g � T w

¼ � y
H

	 
2

þ y
H
þ 2� rT

rT

2c
cþ 1

Kn
Pr

� ��
2� rT

rT

2c
cþ 1

Kn
Pr

� �
ð25Þ
where Tw is the plate temperature, Tg is the gas temperature near the plate, rT is the thermal accommodation
coefficient.

The micro-Couette flow was simulated using the modified RTMC with the MTT model. To reduce the com-
putational cost, periodic and fully developed boundary conditions were used at the inlet and outlet. The sim-
ulation region shown in Fig. 8 was 1 � 1 lm, the grid had 50 � 50 cells with 2 � 2 sub-cells in each cell, the
velocity of the upper plate U0 was 300 m/s, the temperatures of both the upper and lower plates were 300 K
and the inlet and outlet pressures were the standard values. ‘‘M” denotes macro quantities, such as pressure
and temperature. The three simulations had Knudsen numbers of 0.129, 0.0646 and 0.0482, with number den-
sities of 1.0 � 1025, 2.0 � 1025 and 2.687 � 1025. The time step was 9.93 � 10�12 s for three Knudsen numbers.
The total molecule number was over 25,000, and the total number of samples was over 400,000. In the ana-
lytical solutions, rv = 1.0, rT = 1.0, c = 1.4 and Pr = 0.72.

The dimensionless velocities for the three Knudsen numbers predicted by the modified RTMC with the
MTT model agree well with the analytical solutions as shown in Fig. 9. The results show that the slip velocity
near the plate increases with increasing Kn. When Kn = 0.0646, the numerically predicted slip velocity at the
wall is 20.4 m/s, while the slip velocity is 16.8 m/s for Kn = 0.0482, which is about half of the result for
Kn = 0.129. From Eq. (24), the slip velocity can be written as
us

U 0

¼ 2� rv

rv

�
2� 2� rv

rv

þ 1

Kn

� �
ð26Þ
Fig. 8. Micro-Couette flow with periodic boundary conditions.

Fig. 9. Dimensionless velocity distributions for micro-Couette flow for various Kn.
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where us is the slip velocity. Thus, the slip velocity is directly proportional to the Knudsen number as seen in
the Table 2.

Fig. 10 shows that the dimensionless temperature distributions along the y direction are almost identical
with the analytical solutions. The differences between the numerical results and analytical solutions result from
the statistical noise.

4.3. Poiseuille flow in microchannels

For micro-Poiseuille flow, the first-order analytical solution for the velocity [9] is:
Table
Analyt

Kn

0.0482
0.0646
0.129
u
uc

¼ � y
H

	 
2

þ y
H
þ Kn

� ��
1

4
þ Kn

� �
ð27Þ
where uc is the local velocity at the centerline and H is the microchannel height.
The simulation region was 5 � 1 lm for the micro-Poiseuille flow simulations. The grid had 50 � 20 cells

with 4 � 4 sub-cells in each cell, the inlet pressure was Pin = 1.5 � 105 Pa and the outlet pressure was
Pout = 1.0 � 105 Pa, the walls temperature was 300 K. The three simulations had number densities of
1.0 � 1025, 2.0 � 1025 and 3.62 � 1025, with the corresponding Knudsen numbers defined using the height
H being 0.129, 0.0647 and 0.0357. The time step was 1.13 � 10�10 s for three Knudsen numbers. The total
molecule number was over 21,000 and the total number of samples was over 890,000.

To improve convergence, the characteristic pressure boundary conditions [21] were used at the inlet and
outlet. Fig. 11 shows the dimensionless velocities. The numerical results are in good agreement with the ana-
lytical solutions for the various Knudsen numbers. The results verify that the modified RTMC with the MTT
model can accurately simulate continuum-transition gas flows in microchannels.
2
ical and numerical slip velocities for various Kn for micro-Couette flows

Slip velocity (m/s)

Analytical Numerical

13.15 16.88
17.16 20.35
30.82 31.97

Fig. 10. Dimensionless temperature distributions for micro-Couette flow for various Kn.



Fig. 11. Dimensionless velocity distributions for micro-Poiseuille flow for various Kn.
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5. Conclusion

The relaxation time Monte Carlo (RTMC) method was modified by introducing the Maxwellian, ES, or
MTT models into the BGK model equation to accurately simulate continuum-transition flows. A simplified
form of the generalized relaxation time, which is related to the macro velocities and the local Knudsen num-
ber, was developed to be used in the modified RTMC method. The results of the microchannel gas flow sim-
ulations using the modified RTMC with the MTT model are better than those with the other two models
(Maxwellian model and ES model) and agree well with the DSMC method results. The numerical results
for micro-Couette flow and micro-Poiseuille flow for various Knudsen numbers predicted by the modified
RTMC method are in good agreement with the analytical solutions. The computational time consumed by
the modified RTMC with the MTT model is less than that of the DSMC for continuum-transition simulation;
thus, the modified RTMC method is more efficient than the DSMC method for continuum-transition gas flow
simulations and lays the foundation for a hybrid method in the future.
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